We’ve authored 11 patents and counting.

USPTO - 8,150,165

System and Method for Visual Recognition

Melikian, April 3, 2012

Abstract A:  Method for visual recognition of an object in an electronic image includes extracting unique points of an object to be learned and/or a target object. The unique points are obtained by cross-correlating the image with a structure. Generally, the structure and/or the size of the structure may vary to detect extremum information associated with the learned object and/or target object. An icon corresponding to each of the unique points is extracted. The size of the icon corresponds to the scale of the unique point. After extraction of the various icons, an object becomes a collection of icons. Each of these icons is un-rotated and normalized or resized to a constant size so it can be compared with other icons. One of the unique properties of these icons is their stability over scale and angle. > Read Full Text



USPTO - 8,842,191

System and Method for Visual Recognition

Melikian, September 23, 2014

Abstract A: Method for generating a signal based on a visual image includes photographing a target object with a digital camera to obtain a target image; receiving the target image into a processor that is in communication with the camera; cross-correlating the target image with a structure having a variety of scales across the target image; and based on cross-correlating the target image, generating a signal for output on a device associated with the camera. A visual recognition system is also disclosed. > Read Full Text



USPTO - 7,831,098

System and Method for Visual Searching of Objects Using Lines 

Melikian, November 9, 2010

Abstract: Disclosed is method of visual search for objects that include straight lines. A two-step process is used, which includes detecting straight line segments in an image. The lines are generally characterized by their length, midpoint location, and orientation. Hypotheses that a particular straight line segment belongs to a known object are generated and tested. The set of hypotheses is constrained by spatial relationships in the known objects. The speed and robustness of the method and apparatus disclosed makes it immediately applicable to many computer vision applications. > Read Full Text



USPTO - 9,138,895

Method for Picking up an Article Using a Robot Arm and Associated System 

Melikian, September 22, 2015

Abstract A: Method for picking up an article using a robot arm includes capturing images with a camera and processing the captured images to locate a machine-readable symbol affixed to the article. The machine-readable symbol includes an orientation pattern and encoded information pertaining to the article. The orientation pattern provides information to determine x, y, and z coordinates and Rx, Ry and Rz of a gripping tool attached to the robot arm. The encoded information provides information to determine the appropriate gripping tool, gripping location and gripping motion path. > Read Full Text



USPTO - 9,086,271

Industrial Robot System Having Sensor Assembly

Melikian, et al., July 21, 2015

Abstract: An industrial robot system includes an end effector connectable to a robot arm, a drive assembly, and a controller. The end effector includes a distal housing, a spindle assembly rotatable about a rotational axis, a drill bit rotatable about the rotational axis, and a sensor assembly. The sensor assembly includes a first light source, a second light source, and a photosensitive array. The first light source produces a first fan of light which is projected as a first line of light on the object surface. The second light source produces a second fan of light, which is projected as a second line of light on the object surface. The photosensitive array detects a first reflection line corresponding to the first line of light and a second reflection line corresponding to the second line of light  > Read Full Text


USPTO - 8,923,602

Automated Guidance and Recognition System and Method of the Same

Melikian, et al., December 30, 2014

Abstract: Disclosed herein are embodiments and methods of a visual guidance and recognition system requiring no calibration. One embodiment of the system comprises a servo actuated manipulator configured to perform a function, a camera mounted on the face plate of the manipulator, and a recognition controller configured to acquire a two dimensional image of the work piece. The manipulator controller is configured to receive and store the face plate position at a distance “A” between the reference work piece and the manipulator along an axis of the reference work piece when the reference work piece is in the camera’s region of interest. The recognition controller is configured to learn the work piece from the image and the distance “A”. During operation, a work piece is recognized with the system, and the manipulator is accurately positioned with respect to the work piece so that the manipulator can accurately perform its function.  > Read Full Text

Screen Shot 2016-04-11 at 12.17.52 PM


USPTO - 9,019,488

Wheel Toe and Camber Measurement System

Melikian, April 28, 2015

Abstract: A method for measuring wheel alignment of a test wheel rotating about a z-axis using at least one camera and a processor includes obtaining a calibration point from a calibration image of a zero-offset wheel that is the same size as the test wheel and that rotates about the z-axis, obtaining at least one test image of the test wheel with the camera and a non-structured light source, and locating a measurement point in the test image. The measurement point coincides with a radius that the calibration point is offset from the z-axis and the angular displacement of the calibration point from the vertical diameter of the zero-offset wheel. The measurement point is further located based on a change of reflectivity between other points in the test image adjacent the measurement point. > Read Full Text



USPTO - 8,144,193

Work Piece Tracking System and Method

Melikian, March 27, 2012

Abstract: A system and method of visual monitoring of a work implement (e.g., a welding torch) while a task is being performed (e.g., forming a welding joint) to train workers (e.g., apprentices, inexperienced workers) in proper welding technique, for example) and/or to evaluate the worker’s use of a particular work implement (e.g., to determine if the welding torch was held in a desired relationship to the items being welded together, determine if the welding torch formed the joint at the current speed, etc.). In general, one or more cameras may acquire images of a target secured to and/or formed on the work implement. The images may be analyzed to provide feedback to the user, to be evaluated for weld integrity purposes; and/or may be used to compare the performance of a task (e.g., forming a welding joint) with a database of one or more profiles made by experienced and/or expert craftsmen. > Read Full Text



USPTO - 8,280,764

System and Method for Delivery of Electronic Coupons

Melikian, October 2, 2012

Abstract A: method for delivering an electronic coupon to a mobile device includes receiving via a wireless network a target image or icons extracted from the target image, comparing the target image to a plurality of learned images using a processor in communication with the wireless network, determining whether the target image matches at least one learned image, and when the target image matches at least one learned image, delivering to the mobile device over the wireless network an electronic coupon associated with the at least one learned image. The target image can represent at least a portion of a front surface of a consumer packaged good located in a retail outlet. The target image can be generated using a mobile device configured to communicate with the wireless network. The front surface of the consumer packaged good is the surface of the consumer packaged good that faces an aisle of the retail outlet carrying the consumer packaged good; accordingly, the consumer does not need to handle the consumer packaged good in search of a bar code. > Read Full Text



Copyright © Recognition Robotics Inc. | All Rights Reserved
PHP Code Snippets Powered By : XYZScripts.com